

experipy: Automating Script Generation

experipy is a framework for writing and running Computational Science
experiments. It provides facilities for describing an experiment as a shell
script, and mechanisms for then running it. Experiments can be run locally and
also submitted to a cluster’s job queuing system as a PBS script.

from experipy.exp import Experiment
from experipy.grammar import Executable

echo = Executable("echo",
 ["Hello World", "> test.out"],
 outputs=["test.out"]
)

exp = Experiment(echo, expname="test", destdir="results")
exp.run()

The intention of experipy is to act as the core of a researcher’s scripting
framework. In the author’s research group, projects often involved running
dozens of benchmarks with hundreds of configurations in parallel across a
cluster, so experipy was designed to ease the design and scripting of new
experiments and configurations.

Installation

experipy is available on PyPI:

pip install experipy

Or, you can find it on Github at https://github.com/Elemnir/experipy.

Contents:

	1. experipy.grammar - Composing experiments
	1.1. Element objects

	1.2. Executable objects

	1.3. Wrapper objects

	1.4. Pipeline objects

	1.5. Group objects

	1.6. Block objects

	2. experipy.exp - The Experiment Runner
	2.1. An Example

	2.2. Experiment objects

	2.3. The Exp Namespace

	3. experipy.system - System tools in the grammar

	4. experipy.config - Configuration utilities
	4.1. Namespace objects

	5. experipy.metrics - Results Parsing
	5.1. Metric objects

Indices and tables

	Index

	Module Index

	Search Page

1. experipy.grammar - Composing experiments

This module provides the core elements which compose the Experipy grammar:
Executables, Wrappers, Pipelines, and Groups. These elements facilitate
specifying programs to execute as well as the files they depend on.

1.1. Element objects

	
class experipy.grammar.Element(inputs=None, outputs=None)

	The Element class forms the grammar’s base class.

	Parameters:	
	inputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings which are the names of files that the Element
relies on for input. These will be copied to the run directory
when an Experiment is used to run the Element.

	outputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings which are the names of files that the Element
is expected to generate as output. These will be copied from the
run directory when an Experiment is used to run the Element.

	
inputs()

	Generator which yields the Element’s input files

	
outputs()

	Generator which yields the Element’s output files

1.2. Executable objects

The Executable class extends the base Element class by providing an abstraction
for describing a program executable. Once instantiated, converting an Executable
object to a string will yield the command string that will be entered into the
shell script.

	
class experipy.grammar.Executable(prog, opts=None, wait=True, **kwargs)

	Executable objects should represent a single program and its arguments.

	Parameters:	
	prog (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the program executable.

	opts (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of command line options to pass to the program. Defaults to
an empty list if not provided.

	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, a ‘&’ will be appended to the argument list, indicating to
the shell that it should background the program instead of blocking
on it. Defaults to True.

1.3. Wrapper objects

Wrappers are executables which accept another Executable and its arguments as a
parameter, and incorporates the wrapped Executable into its argument list and
collection of inputs and outputs.

	
class experipy.grammar.Wrapper(prog, opts, wrapped, **kwargs)

	Wrapper objects allow specification of a program which wraps another.

Wrappers are a subclass of Executable which allow specification of
programs such as GDB or Valgrind, which wrap around another program
to alter or observe its execution.

	Parameters:	
	prog (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the program executable.

	opts (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of command line options to pass to the program. Must
minimally contain a string having the value ‘[[wrapped]]’, which
indicates where the wrapped executable should be inserted into
the wrapping executable’s argument list.

	wrapped (experipy.Executable) – The wrapped Executable. Inputs and outputs specified to wrapped
will be included in the resultant object’s inputs and outputs.

	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, a ‘&’ will be appended to the argument list,
indicating to the shell that it should background the program
instead of blocking on it. Defaults to True.

	
inputs()

	Generator which yields the Wrapper’s input files

	
outputs()

	Generator which yields the Wrapper’s output files

1.4. Pipeline objects

The Linux shell supports piping of output from one program into the input of
another. Pipelines provide a mechanism to support that feature in the
generated shell scripts.

	
class experipy.grammar.Pipeline(*parts, **kwargs)

	Pipeline objects allow specification of pipelined workflows.

A Pipeline takes one or more Element parts, and joins them with a
‘|’ operator, indicating to the shell that each part should recieve
its input from the previous part, and provide its output to the
next.

	Parameters:	*parts – One or more Executables or Wrappers to be chained together into
a pipeline. Inputs and outputs to the individual parts will be
included in the Pipeline’s inputs and outputs.

	
inputs()

	Generator which yields the Pipeline’s input files

	
outputs()

	Generator which yields the Pipeline’s output files

1.5. Group objects

Groups allow generation of more complex experiment behavior than the execution
of a single Executable, Wrapper, or Pipeline.

	
class experipy.grammar.Group(*parts, **kwargs)

	Group objects allow specification of Executables to be run in order.

In the resultant script, a Group’s parts will be included one after
another, in the order they were specified. Groups should be used
when specifying complex experiments involving multiple steps like
set up or post-processing, or combined with the wait parameter to
Executable to specify programs which should be run concurrently. A
Group can also be used as a part in another Group.

	Parameters:	*parts – One or more Elements to be placed into the script. Inputs and
outputs to the individual parts will be included in the Group’s
inputs and outputs.

	
inputs()

	Generator which yields the Group’s input files

	
outputs()

	Generator which yields the Group’s output files

1.6. Block objects

Blocks are simple text blocks that will be rendered into the runscript without
additional processing.

	
class experipy.grammar.Block(text, **kwargs)

	Blocks allow arbitrary text to be rendered into the script
without further processing or enforcing other grammatical rules.

	Parameters:	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text to be rendered.

2. experipy.exp - The Experiment Runner

This module provides the Experiment class for running compositions in the
grammar, as well as the Exp Namespace for controlling and configuring Experiment
behavior.

2.1. An Example

from experipy.exp import Experiment
from experipy.grammar import Executable

exp = Experiment(Executable("echo", ["Hello World"]),
 expname="test",
 destdir="results")
exp.run()

This will run the program echo with the argument Hello World in a
directory in /tmp, writing the output and error, along with timing
information, to the directory results. Directories will be created as
needed.

2.2. Experiment objects

	
class experipy.exp.Experiment(cmd, expname='exp', destdir=None)

	Experiment objects perform the generation and execution of runscripts.

Once a composition has been specified in the grammar, wrapping it in
an Experiment allows the user to generate a shell script as a string
using the make_runscript method. The run and queue methods provide
mechanisms for executing the generated scripts.

	Parameters:	
	cmd (experipy.Element) – A composition of experipy Elements such as Executable and Group,
which defines the behavior the user wishes the Experiment to
perform.

	expname (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name to be used for identifying the experiment. Defaults to
Exp.defname, which defaults to “exp”.

	destdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional path to a directory where the results from running
the experiment should be stored. If None, expname will be used.

	
make_runscript(preamble='#!/bin/bash', rm_rundir=True)

	Create a string containing the experiment rendered as a shell script.

	Parameters:	
	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – The first line(s) of the runscript. Defaults to Exp.shebang,
which defaults to “#!/bin/bash”.

	rm_rundir (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a line deleting the experiment’s working directory
will be added to the end of the script. Defaults to True.

	Returns:	A run script as described by the composition provided to the
Experiment.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
queue(h=False, n=False, q=None, A=None, **kwargs)

	Submit the experiment to a job queuing system as a PBS script.

Generates a script with a PBS script header, writes the script
to the results directory, and then submits it to the job queuing
system by running the command qsub as a subprocess.

	Parameters:	
	h (bool [https://docs.python.org/3/library/functions.html#bool]) – Will add a -h to pbs headers if True, Default is False.

	n (bool [https://docs.python.org/3/library/functions.html#bool]) – Will add a -n to pbs headers if True, Default is False.

	q (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optionally request a resource queue.

	A (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optionally name the account to charge for this job.

	**kwargs – The remaining keyword arguments will be combined into
resource requests with -l.

	
run(rm_rundir=True)

	Execute the experiment as a subprocess of the current process.

Generates a run script, writes that script to the results
directory, and then executes the script as a subprocess of the
current process. The time the script takes to execute, including
setup and clean up time, is recorded. This function blocks until
the experiment is complete.

	Parameters:	rm_rundir (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the directory created for running the experiment
will be deleted at the end of the experiment. Defaults to
True.

	
sbatch(**kwargs)

	Submit the experiment to a Slurm cluster as an sbatch script.

Generates a script with a Slurm script header, writes the script
to the results directory, and then submits it to the job queuing
system by running the command sbatch as a subprocess.

	Parameters:	**kwargs – Keyword arguments will be translated to SBATCH directives of
the form #SBATCH --<key>=<value>. Underscores in keyword
argument names will be substituted for dashes in the emitted
SBATCH directives. For example, cpus_per_task=4 will be
translated to #SBATCH --cpus-per-task=4.

2.3. The Exp Namespace

Default values for paths and filenames in the Experiment class are controlled
by a Namespace called Exp. These defaults are listed below, and can be
overridden by setting a new value in the .experipyrc under the [Exp]
section.

	Key
	Default Value
	Description

	shebang
	#!/bin/bash
	The first line of the generated shell scripts.

	rundir
	/tmp
	Path to the directory where the experiment is
going to be run.

	defname
	exp
	Default name of experiments.

	runsh
	run.sh
	Name of the generated shell scripts.

	out
	raw.out
	Name of the file which will collect the
experiment’s standard output.

	err
	raw.err
	Name of the file which will collect the
experiment’s standard error.

	timing
	harness_time.out
	When an experiment is run using run(), its
run time will be captured in this file.

3. experipy.system - System tools in the grammar

This module provides a number of system and shell tools for helping to specify
common tasks within the experipy grammar.

	
experipy.system.cd(dirname)

	

	
experipy.system.cp(target, dest, opts=[])

	

	
experipy.system.mkdir(dirname, make_parents=False)

	

	
experipy.system.mkfifo(pipename)

	

	
experipy.system.rm(*files)

	

	
experipy.system.wait()

	

	
experipy.system.python_script(script, sopts=[], pythonexe='python', **kwargs)

	

	
experipy.system.java_app(jarfile, popts=[], javaexe='java', jopts=[], **kwargs)

	

4. experipy.config - Configuration utilities

This modules provides the Namespace class, which provides a mechanism for
defining collections of configurable constants.

4.1. Namespace objects

	
class experipy.config.Namespace(name=None, **kwargs)

	Namespace objects are intended to act as collections of constants.

All arguments passed to the Namespace when it is instantiated are
bound to attributes of the instance, allowing attribute reference as
opposed to dictionary access syntax. For example:
n = Namespace("N", foo="bar") would generate a namespace with an
attribute n.foo whose value is "bar".

Namespaces also support configuration using configparser INI files.
By default, configuration is stored and read from ~/.experipyrc,
unless the environment variable EXPERIPY_CONFIG_PATH is set, in
which case that value is used as the filename.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to assign to the namespace. If not provided, the
resulting Namespace instance will be anonymous and not
configurable via the configuration file.

	**kwargs – The remaining keyword arguments will be added the Namespace’s
dictionary, allowing for attribute access. If a name was
provided, and the namespace had a section in the configuration
file, conflicting arguments will have their values ignored in
favor of the value in the configuration file.

	
classmethod dump_full_config(fname='/home/docs/.experipyrc')

	Write a config of all instantiated and preconfigured Namespaces.

All instantiated and named Namespaces will be dumped to the
given file, along with any Namespace configurations which have
been loaded from the config, but whose corresponding Namespace
has not yet been instantiated.

	Parameters:	fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to write the config to. If not provided, it
will default to the current config file (“~/.experipyrc” or
the value of the EXPERIPY_CONFIG_PATH environment variable).

5. experipy.metrics - Results Parsing

This module provides the Metric class as a means of defining and
extracting values from the results of Experiment runs.

5.1. Metric objects

	
class experipy.metrics.Metric(name, filename, regex, parser=<type 'float'>)

	Metric objects define a value to be extracted from a given file.

A metric consists of a base filename, a regex with which to search
that file, and a parser which converts the value, once found, into
the desired type.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the metric.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file in a given results directory to search.
For instance, if the metric should appear in the standard
output of a given experiment, then filename should be set as
raw.out.

	regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string which will be compiled as a regular expression and
used to search for the metric. Must contain a Named Group with
the name value (i.e. (?P<value>\d+)).

	parser (callable [https://docs.python.org/3/library/functions.html#callable]) – A callable taking a single string argument and returning the
value converted to the desired type. Defaults to float.

	
get_value(resultpath, default=None)

	Given a path to a results directory, attempt to extract the
value. Optionally provide a default value in the event the value
can’t be found.

Index

 B
 | C
 | D
 | E
 | G
 | I
 | J
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | W

B

 	
 	Block (class in experipy.grammar)

C

 	
 	cd() (in module experipy.system)

 	
 	cp() (in module experipy.system)

D

 	
 	dump_full_config() (experipy.config.Namespace class method)

E

 	
 	Element (class in experipy.grammar)

 	
 	Executable (class in experipy.grammar)

 	Experiment (class in experipy.exp)

G

 	
 	get_value() (experipy.metrics.Metric method)

 	
 	Group (class in experipy.grammar)

I

 	
 	inputs() (experipy.grammar.Element method)

 	(experipy.grammar.Group method)

 	(experipy.grammar.Pipeline method)

 	(experipy.grammar.Wrapper method)

J

 	
 	java_app() (in module experipy.system)

M

 	
 	make_runscript() (experipy.exp.Experiment method)

 	Metric (class in experipy.metrics)

 	
 	mkdir() (in module experipy.system)

 	mkfifo() (in module experipy.system)

N

 	
 	Namespace (class in experipy.config)

O

 	
 	outputs() (experipy.grammar.Element method)

 	(experipy.grammar.Group method)

 	(experipy.grammar.Pipeline method)

 	(experipy.grammar.Wrapper method)

P

 	
 	Pipeline (class in experipy.grammar)

 	
 	python_script() (in module experipy.system)

Q

 	
 	queue() (experipy.exp.Experiment method)

R

 	
 	rm() (in module experipy.system)

 	
 	run() (experipy.exp.Experiment method)

S

 	
 	sbatch() (experipy.exp.Experiment method)

W

 	
 	wait() (in module experipy.system)

 	
 	Wrapper (class in experipy.grammar)

 _static/comment-bright.png

nav.xhtml

 Table of Contents

 		experipy: Automating Script Generation

 		1. experipy.grammar - Composing experiments

 		1.1. Element objects

 		1.2. Executable objects

 		1.3. Wrapper objects

 		1.4. Pipeline objects

 		1.5. Group objects

 		1.6. Block objects

 		2. experipy.exp - The Experiment Runner

 		2.1. An Example

 		2.2. Experiment objects

 		2.3. The Exp Namespace

 		3. experipy.system - System tools in the grammar

 		4. experipy.config - Configuration utilities

 		4.1. Namespace objects

 		5. experipy.metrics - Results Parsing

 		5.1. Metric objects

_static/plus.png

_static/up-pressed.png

_static/file.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/down-pressed.png

_static/comment.png

